【導(dǎo)讀】幾乎所有的電源均是專為提供一個穩(wěn)定的輸出電壓或電流而設(shè)計的。提供這種輸出調(diào)節(jié)功能需要一個閉環(huán)系統(tǒng)和即將被調(diào)節(jié)的輸出電壓或電流的反饋。盡管有很多種用于對可用反饋環(huán)路進(jìn)行補(bǔ)償?shù)牟煌刂仆負(fù)洌鼈兺ǔ6伎梢员粴w為兩類:脈寬調(diào)制(PWM) 或遲滯。在這兩種基本拓?fù)涞幕A(chǔ)上演變出了第三種拓?fù)洌錇榇硕叩娜诤希夯谶t滯的拓?fù)洹a槍Σ煌膽?yīng)用,這些控制拓?fù)涓饔袃?yōu)缺點(diǎn)。
電壓模式控制
脈寬調(diào)制(PWM) 控制被歸為兩種基本類型:電壓模式和電流模式。為簡單起見,本文只討論采用輸入電壓前饋的電壓模式控制。有關(guān)電壓模式與電流模式更為詳細(xì)的比較,請見參考文獻(xiàn)1。圖1 示出了降壓轉(zhuǎn)換器中電壓模式控制的基本方框圖2。

圖1:電壓模式控制包括了誤差放大器、時鐘和內(nèi)部基準(zhǔn)電壓(VREF)
當(dāng)采用電壓模式控制來調(diào)節(jié)輸出電壓時,它通過一個連接至其反饋(FB) 輸入的阻性分壓器來檢測輸出電壓的縮小版。具有高增益的誤差放大器隨后將該FB信號與一個高準(zhǔn)確度內(nèi)部基準(zhǔn)電壓進(jìn)行比較。圍繞誤差放大器的環(huán)路補(bǔ)償電路負(fù)責(zé)保持系統(tǒng)的穩(wěn)定。
電壓模式控制擁有諸多的優(yōu)勢。通過僅調(diào)節(jié)輸出電壓和其他良好受控的內(nèi)部信號(比如:時鐘和內(nèi)部基準(zhǔn)電壓),該拓?fù)渚邆浞浅?qiáng)的抗噪聲能力。而且它還相當(dāng)?shù)睾唵蚊髁恕@幂斎腚妷呵梆伇3至撕唵涡裕栽诓粩嘧兓妮斎腚妷簵l件下維持恒定的環(huán)路增益。此外,輸入電壓前饋還可大幅改善針對線路電壓瞬變的響應(yīng)。最后,時鐘實現(xiàn)了開關(guān)頻率的控制,包括使電路同步至一個外部時鐘源的可能性。
電壓模式控制的主要劣勢是必需的環(huán)路補(bǔ)償及對應(yīng)的環(huán)路帶寬限制。就其本質(zhì)而言,電壓模式控制在功率級中引入了一個雙極點(diǎn),該雙極點(diǎn)位于輸出濾波器的轉(zhuǎn)折頻率,因而需要在誤差放大器的周圍布設(shè)兩個正確定位的零點(diǎn)。由于該雙極點(diǎn)的頻率通常很低,因而環(huán)路帶寬被限制在較低的水平。一般情況下,其被限制為不超過開關(guān)頻率的1/10。這對電源的瞬態(tài)響應(yīng)產(chǎn)生了顯著的負(fù)面影響。因此,設(shè)計人員必須通過增加輸出電容來獲得更好的瞬態(tài)結(jié)果,從而導(dǎo)致系統(tǒng)成本升高。
考慮到以上的利弊權(quán)衡,電壓模式控制仍然是頗具價值的,尤其在那些對噪聲敏感的應(yīng)用中。電壓模式控制的高噪聲耐受性及其可同步至一個系統(tǒng)時鐘的能力使其很適合于對噪聲最為敏感的應(yīng)用,例如:醫(yī)療和儀表設(shè)備等。
遲滯控制
純粹和基本形式的遲滯控制是極其簡單的-所有控制拓?fù)渲凶詈唵蔚囊环N(圖2)3。在其端子之間具有某些小遲滯的比較器通過FB輸入將輸出電壓直接與高準(zhǔn)確度的內(nèi)部基準(zhǔn)電壓VREF進(jìn)行比較。

圖2:簡單的遲滯控制拓?fù)渲恍枰粋€比較器和內(nèi)部VREF
這種直接控制輸出電壓的優(yōu)勢在于控制環(huán)路的速度。當(dāng)輸出電壓由于瞬變的原因而發(fā)生變化時,控制環(huán)路開始做出反應(yīng)所需的時間僅受限于比較器和柵極驅(qū)動器中的傳播延遲。誤差信號不必穿過低帶寬誤差放大器。因此,遲滯拓?fù)涫撬俣茸羁斓目刂仆負(fù)洹?/div>
此外,其工作原理的簡單性還使其能在無需任何環(huán)路補(bǔ)償?shù)那闆r下保持固有的穩(wěn)定性。而且這種簡單性也使之成為一種低成本的拓?fù)洹T陔娫粗袥]有需要設(shè)計、構(gòu)建和測試的振蕩器或誤差放大器。控制開關(guān)動作僅需一個基本的比較器即可。
遲滯拓?fù)涞闹饕毕菔瞧溟_關(guān)頻率變化。沒有負(fù)責(zé)設(shè)定開關(guān)頻率的時鐘或同步信號。取而代之的是,開關(guān)頻率由遲滯量以及外部組件和工作條件來設(shè)定。
當(dāng)采用純遲滯轉(zhuǎn)換器時,預(yù)計在輸入電壓和負(fù)載范圍內(nèi)將發(fā)生很大的頻率變化。而且,如果不采用一個高增益誤差放大器的話,所實現(xiàn)的輸出電壓的DC設(shè)定點(diǎn)有可能不如采用電壓模式控制時那么精準(zhǔn)。最后,遲滯控制需要利用輸出電容器中的等效串聯(lián)電阻(ESR)。因此,當(dāng)運(yùn)用純遲滯拓?fù)鋾r,一般不能使用ESR 極小的陶瓷輸出電容器。
但是,在某些低功率、非常低成本的應(yīng)用中(比如:玩具),由于此類終端設(shè)備的價位非常之低,而且其低功率在遲滯電源的寬開關(guān)頻率范圍內(nèi)產(chǎn)生的電磁干擾(EMI) 水平很低,因此遲滯轉(zhuǎn)換器也許是可以接受的。另外,具有非常嚴(yán)酷之瞬變的系統(tǒng)需要采用遲滯或基于遲滯的拓?fù)鋪砭S持可接受的輸出電壓調(diào)節(jié)。假如這些系統(tǒng)的輸入電壓、輸出電壓和其他工作條件處于良好受控的狀態(tài),則開關(guān)頻率被保持在一個可接受的范圍之內(nèi)。這使得遲滯控制成為那些依靠一個固定輸入電壓運(yùn)作并產(chǎn)生一個固定輸出電壓的應(yīng)用的有效選擇。
基于遲滯的控制
許多控制拓?fù)鋸母旧险f都是遲滯的,但其包含了其他旨在克服頻率變化和其他純遲滯拓?fù)渚窒扌缘碾娐贰@纾鼈儼―-CAP、D-CAP2、COT、具有ERM 的COT 和DCS-Control拓?fù)洹1疚膬H分析和比較DCS-Control4及相似器件。
根本上說,DCS-Control(采用至節(jié)能模式的無縫轉(zhuǎn)換的直接控制)是一種遲滯拓?fù)洌淙诤狭穗妷耗J胶碗娏髂J降哪承┨匦?圖3)。和在電壓模式控制中一樣,遲滯比較器將一個誤差放大器的輸出與一個鋸齒波形進(jìn)行比較。

圖3:在基于遲滯的DCS-Control拓?fù)渲校`差放大器和內(nèi)部VREF與電壓模式控制中的相同,而遲滯比較器則取自遲滯拓?fù)洹?dǎo)通定時器(on timer)是基于遲滯的拓?fù)渌赜械?/div>
該鋸齒波并非產(chǎn)生自某個時鐘,而是通過一個與輸出電壓直接相連的特殊電路產(chǎn)生在VOS輸入引腳上。實質(zhì)上,遲滯比較器仍然具有一個通過該VOS引腳至輸出電壓的直接連接,并接入了一個高增益誤差放大器以提供非常優(yōu)良的輸出電壓設(shè)定點(diǎn)準(zhǔn)確度。
除了將取自遲滯和電壓模式拓?fù)涞倪t滯比較器與誤差放大器加以組合之外,DCS-Control還運(yùn)用了一種導(dǎo)通時間電路以控制開關(guān)頻率。最后,內(nèi)置了必需的環(huán)路補(bǔ)償功能電路以實現(xiàn)穩(wěn)定性。
DCS-Control的主要優(yōu)點(diǎn)是可保持遲滯轉(zhuǎn)換器非常快的瞬態(tài)響應(yīng)以及電壓模式轉(zhuǎn)換器的輸出電壓準(zhǔn)確度,同時克服了這兩種拓?fù)淦渌年P(guān)鍵缺陷,即:緩慢的響應(yīng)時間、有限的控制環(huán)路帶寬和頻率變化。
由于VOS引腳提供了輸出電壓的直接控制,因此輸出電壓的任何變化都將直接通過控制環(huán)路傳播,而不會受到誤差放大器帶寬的限制。這將大大加快瞬態(tài)響應(yīng)速度。
就目前的DCS-Control實施方案而言,其主要缺點(diǎn)是無法同步至一個時鐘。作為一種基于遲滯的拓?fù)洌洳⑽刺峁r鐘輸入信號,而是提供了一個在各種工作條件下變化極小的受控開關(guān)頻率。在某些場合中,該變化小于電壓模式轉(zhuǎn)換器的時鐘頻率容差。
諸如DCS-Control等基于遲滯的拓?fù)淦渥罴训氖褂脠龊鲜悄切庥龃蟮乃沧儾⑿枰獦O高輸出電壓準(zhǔn)確度的應(yīng)用。此類應(yīng)用包括為嵌入式或計算系統(tǒng)中的處理器內(nèi)核供電,以及工業(yè)自動化和汽車信息娛樂系統(tǒng)。
結(jié)論
對于不同的應(yīng)用,“電壓模式”、“遲滯”和“基于遲滯”等三種主要的電源控制拓?fù)涓饔袃?yōu)劣。雖然大多數(shù)電源工程師都習(xí)慣并樂于使用電壓模式控制,但遲滯和基于遲滯的拓?fù)鋮s能提供同類最佳的瞬態(tài)響應(yīng),而且應(yīng)當(dāng)就諸如處理器內(nèi)核供電等需要這種快速響應(yīng)速度的應(yīng)用對其做深入探究。由于每種控制拓?fù)涠加袛?shù)量極為龐大的設(shè)備在使用,因此意味著對于幾乎所有的應(yīng)用而言都很可能有一種最優(yōu)的電源解決方案。
【推薦閱讀】
【推薦閱讀】
特別推薦
- 0.1微伏決定生死!儀表放大器如何成為醫(yī)療設(shè)備的“聽診器”
- 0.01%精度風(fēng)暴!儀表放大器如何煉成工業(yè)自動化的“神經(jīng)末梢”
- 如何選擇正確的工業(yè)自動化應(yīng)用的儀表放大器?
- 從單管到并聯(lián):SiC MOSFET功率擴(kuò)展實戰(zhàn)指南
- 搶占大灣區(qū)C位!KAIFA GALA 2025AIoT方案征集收官在即,與頭部企業(yè)同臺競逐
- 破解工業(yè)電池充電器難題:升壓or圖騰柱?SiC PFC拓?fù)溥x擇策略
- μV級精度保衛(wèi)戰(zhàn):信號鏈電源噪聲抑制架構(gòu)全解,拒絕LSB丟失!
技術(shù)文章更多>>
- 如何設(shè)計高性能CCM反激式轉(zhuǎn)換器?中等功率隔離應(yīng)用解析
- IOTE 2025上海物聯(lián)網(wǎng)展圓滿收官!AIoT+5G生態(tài)引爆智慧未來
- 2025西部電博會啟幕在即,中文域名“西部電博會.網(wǎng)址”正式上線
- 高壓BMS:電池儲能系統(tǒng)的安全守護(hù)者與壽命延長引擎
- 高精度低噪聲 or 大功率強(qiáng)驅(qū)動?儀表放大器與功率放大器選型指南
技術(shù)白皮書下載更多>>
- 車規(guī)與基于V2X的車輛協(xié)同主動避撞技術(shù)展望
- 數(shù)字隔離助力新能源汽車安全隔離的新挑戰(zhàn)
- 汽車模塊拋負(fù)載的解決方案
- 車用連接器的安全創(chuàng)新應(yīng)用
- Melexis Actuators Business Unit
- Position / Current Sensors - Triaxis Hall
熱門搜索
Murata
NAND
NFC
NFC芯片
NOR
ntc熱敏電阻
OGS
OLED
OLED面板
OmniVision
Omron
OnSemi
PI
PLC
Premier Farnell
Recom
RF
RF/微波IC
RFID
rfid
RF連接器
RF模塊
RS
Rubycon
SATA連接器
SD連接器
SII
SIM卡連接器
SMT設(shè)備
SMU