<noscript id="jftie"></noscript>
    <style id="jftie"><mark id="jftie"><dfn id="jftie"></dfn></mark></style>
  1. <span id="jftie"></span>
    • 国产成人精品久久一区二区,韩国精品久久久久久无码,国产精品国产高清国产av,欧美99久久无码一区人妻a片,亚洲高清码在线精品av,午夜人妻久久久久久久久,伊人热热久久原色播放www ,亚洲女教师丝祙在线播放
      你的位置:首頁 > 測試測量 > 正文

      基于深度學習所需的硬件架構解析

      發布時間:2016-11-22 責任編輯:sherry

      【導讀】深度學習在這十年,甚至是未來幾十年內都有可能是最熱門的話題。雖然深度學習已是廣為人知了,但它并不僅僅包含數學、建模、學習和優化。算法必須在優化后的硬件上運行,因為學習成千上萬的數據可能需要長達幾周的時間。因此,深度學習網絡亟需更快、更高效的硬件。

      眾所周知,并非所有進程都能在CPU上高效運行。游戲和視頻處理需要專門的硬件——圖形處理器(GPU),信號處理則需要像數字信號處理器(DSP)等其它獨立的架構。人們一直在設計用于學習(learning)的專用硬件,例如,2016年3月與李世石對陣的AlphaGo計算機使用了由1920個CPU和280個GPU組成的分布式計算模塊。而隨著英偉達發布新一代的Pascal GPU,人們也開始對深度學習的軟件和硬件有了同等的關注。接下來,讓我們重點來看深度學習的硬件架構。

      對深度學習硬件平臺的要求

      要想明白我們需要怎樣的硬件,必須了解深度學習的工作原理。首先在表層上,我們有一個巨大的數據集,并選定了一種深度學習模型。每個模型都有一些內部參數需要調整,以便學習數據。而這種參數調整實際上可以歸結為優化問題,在調整這些參數時,就相當于在優化特定的約束條件。
      【導讀】深度學習在這十年,甚至是未來幾十年內都有可能是最熱門的話題。雖然深度學習已是廣為人知了,但它并不僅僅包含數學、建模、學習和優化。算法必須在優化后的硬件上運行,因為學習成千上萬的數據可能需要長達幾周的時間。因此,深度學習網絡亟需更快、更高效的硬件。    眾所周知,并非所有進程都能在CPU上高效運行。游戲和視頻處理需要專門的硬件——圖形處理器(GPU),信號處理則需要像數字信號處理器(DSP)等其它獨立的架構。人們一直在設計用于學習(learning)的專用硬件,例如,2016年3月與李世石對陣的AlphaGo計算機使用了由1920個CPU和280個GPU組成的分布式計算模塊。而隨著英偉達發布新一代的Pascal GPU,人們也開始對深度學習的軟件和硬件有了同等的關注。接下來,讓我們重點來看深度學習的硬件架構。    對深度學習硬件平臺的要求    要想明白我們需要怎樣的硬件,必須了解深度學習的工作原理。首先在表層上,我們有一個巨大的數據集,并選定了一種深度學習模型。每個模型都有一些內部參數需要調整,以便學習數據。而這種參數調整實際上可以歸結為優化問題,在調整這些參數時,就相當于在優化特定的約束條件。 1   百度的硅谷人工智能實驗室(SVAIL)已經為深度學習硬件提出了DeepBench基準,這一基準著重衡量的是基本計算的硬件性能,而不是學習模型的表現。這種方法旨在找到使計算變慢或低效的瓶頸。 因此,重點在于設計一個對于深層神經網絡訓練的基本操作執行效果最佳的架構。那么基本操作有哪些呢?現在的深度學習算法主要包括卷積神經網絡(CNN)和循環神經網絡(RNN)。基于這些算法,DeepBench提出以下四種基本運算:    矩陣相乘(Matrix MulTIplicaTIon)——幾乎所有的深度學習模型都包含這一運算,它的計算十分密集。    卷積(ConvoluTIon)——這是另一個常用的運算,占用了模型中大部分的每秒浮點運算(浮點/秒)。    循環層(Recurrent Layers )——模型中的反饋層,并且基本上是前兩個運算的組合。    All Reduce——這是一個在優化前對學習到的參數進行傳遞或解析的運算序列。在跨硬件分布的深度學習網絡上執行同步優化時(如AlphaGo的例子),這一操作尤其有效。    除此之外,深度學習的硬件加速器需要具備數據級別和流程化的并行性、多線程和高內存帶寬等特性。 另外,由于數據的訓練時間很長,所以硬件架構必須低功耗。 因此,效能功耗比(Performance per Watt)是硬件架構的評估標準之一。    當前趨勢與未來走向 2 英偉達的GPU在深度學習硬件市場上一直處于領先地位。圖片:英偉達    英偉達以其大規模的并行GPU和專用GPU編程框架CUDA主導著當前的深度學習市場。但是越來越多的公司開發出了用于深度學習的加速硬件,比如谷歌的張量處理單元(TPU/Tensor Processing Unit)、英特爾的Xeon Phi Knight‘s Landing,以及高通的神經網絡處理器(NNU/Neural Network Processor)。像Teradeep這樣的公司現在開始使用FPGA(現場可編程門陣列),因為它們的能效比GPU的高出10倍。 FPGA更靈活、可擴展、并且效能功耗比更高。 但是對FPGA編程需要特定的硬件知識,因此近來也有對軟件層面的FPGA編程模型的開發。    此外,一直以來廣為人所接受的理念是,適合所有模型的統一架構是不存在的,因為不同的模型需要不同的硬件處理架構。 而研究人員正在努力,希望FPGA的廣泛使用能夠推翻這一說法。    大多數深度學習軟件框架(如TensorFlow、Torch、Theano、CNTK)是開源的,而Facebook最近也開放其 Big Sur 深度學習硬件平臺,因此在不久的將來,我們應該會看到更多深度學習的開源硬件架構 。
      百度的硅谷人工智能實驗室(SVAIL)已經為深度學習硬件提出了DeepBench基準,這一基準著重衡量的是基本計算的硬件性能,而不是學習模型的表現。這種方法旨在找到使計算變慢或低效的瓶頸。 因此,重點在于設計一個對于深層神經網絡訓練的基本操作執行效果最佳的架構。那么基本操作有哪些呢?現在的深度學習算法主要包括卷積神經網絡(CNN)和循環神經網絡(RNN)。基于這些算法,DeepBench提出以下四種基本運算:

      矩陣相乘(Matrix MulTIplicaTIon)——幾乎所有的深度學習模型都包含這一運算,它的計算十分密集。

      卷積(ConvoluTIon)——這是另一個常用的運算,占用了模型中大部分的每秒浮點運算(浮點/秒)。

      循環層(Recurrent Layers )——模型中的反饋層,并且基本上是前兩個運算的組合。

      All Reduce——這是一個在優化前對學習到的參數進行傳遞或解析的運算序列。在跨硬件分布的深度學習網絡上執行同步優化時(如AlphaGo的例子),這一操作尤其有效。

      除此之外,深度學習的硬件加速器需要具備數據級別和流程化的并行性、多線程和高內存帶寬等特性。 另外,由于數據的訓練時間很長,所以硬件架構必須低功耗。 因此,效能功耗比(Performance per Watt)是硬件架構的評估標準之一。

      當前趨勢與未來走向
      【導讀】深度學習在這十年,甚至是未來幾十年內都有可能是最熱門的話題。雖然深度學習已是廣為人知了,但它并不僅僅包含數學、建模、學習和優化。算法必須在優化后的硬件上運行,因為學習成千上萬的數據可能需要長達幾周的時間。因此,深度學習網絡亟需更快、更高效的硬件。    眾所周知,并非所有進程都能在CPU上高效運行。游戲和視頻處理需要專門的硬件——圖形處理器(GPU),信號處理則需要像數字信號處理器(DSP)等其它獨立的架構。人們一直在設計用于學習(learning)的專用硬件,例如,2016年3月與李世石對陣的AlphaGo計算機使用了由1920個CPU和280個GPU組成的分布式計算模塊。而隨著英偉達發布新一代的Pascal GPU,人們也開始對深度學習的軟件和硬件有了同等的關注。接下來,讓我們重點來看深度學習的硬件架構。    對深度學習硬件平臺的要求    要想明白我們需要怎樣的硬件,必須了解深度學習的工作原理。首先在表層上,我們有一個巨大的數據集,并選定了一種深度學習模型。每個模型都有一些內部參數需要調整,以便學習數據。而這種參數調整實際上可以歸結為優化問題,在調整這些參數時,就相當于在優化特定的約束條件。 1   百度的硅谷人工智能實驗室(SVAIL)已經為深度學習硬件提出了DeepBench基準,這一基準著重衡量的是基本計算的硬件性能,而不是學習模型的表現。這種方法旨在找到使計算變慢或低效的瓶頸。 因此,重點在于設計一個對于深層神經網絡訓練的基本操作執行效果最佳的架構。那么基本操作有哪些呢?現在的深度學習算法主要包括卷積神經網絡(CNN)和循環神經網絡(RNN)。基于這些算法,DeepBench提出以下四種基本運算:    矩陣相乘(Matrix MulTIplicaTIon)——幾乎所有的深度學習模型都包含這一運算,它的計算十分密集。    卷積(ConvoluTIon)——這是另一個常用的運算,占用了模型中大部分的每秒浮點運算(浮點/秒)。    循環層(Recurrent Layers )——模型中的反饋層,并且基本上是前兩個運算的組合。    All Reduce——這是一個在優化前對學習到的參數進行傳遞或解析的運算序列。在跨硬件分布的深度學習網絡上執行同步優化時(如AlphaGo的例子),這一操作尤其有效。    除此之外,深度學習的硬件加速器需要具備數據級別和流程化的并行性、多線程和高內存帶寬等特性。 另外,由于數據的訓練時間很長,所以硬件架構必須低功耗。 因此,效能功耗比(Performance per Watt)是硬件架構的評估標準之一。    當前趨勢與未來走向 2 英偉達的GPU在深度學習硬件市場上一直處于領先地位。圖片:英偉達    英偉達以其大規模的并行GPU和專用GPU編程框架CUDA主導著當前的深度學習市場。但是越來越多的公司開發出了用于深度學習的加速硬件,比如谷歌的張量處理單元(TPU/Tensor Processing Unit)、英特爾的Xeon Phi Knight‘s Landing,以及高通的神經網絡處理器(NNU/Neural Network Processor)。像Teradeep這樣的公司現在開始使用FPGA(現場可編程門陣列),因為它們的能效比GPU的高出10倍。 FPGA更靈活、可擴展、并且效能功耗比更高。 但是對FPGA編程需要特定的硬件知識,因此近來也有對軟件層面的FPGA編程模型的開發。    此外,一直以來廣為人所接受的理念是,適合所有模型的統一架構是不存在的,因為不同的模型需要不同的硬件處理架構。 而研究人員正在努力,希望FPGA的廣泛使用能夠推翻這一說法。    大多數深度學習軟件框架(如TensorFlow、Torch、Theano、CNTK)是開源的,而Facebook最近也開放其 Big Sur 深度學習硬件平臺,因此在不久的將來,我們應該會看到更多深度學習的開源硬件架構 。
      英偉達的GPU在深度學習硬件市場上一直處于領先地位。圖片:英偉達

      英偉達以其大規模的并行GPU和專用GPU編程框架CUDA主導著當前的深度學習市場。但是越來越多的公司開發出了用于深度學習的加速硬件,比如谷歌的張量處理單元(TPU/Tensor Processing Unit)、英特爾的Xeon Phi Knight‘s Landing,以及高通的神經網絡處理器(NNU/Neural Network Processor)。像Teradeep這樣的公司現在開始使用FPGA(現場可編程門陣列),因為它們的能效比GPU的高出10倍。 FPGA更靈活、可擴展、并且效能功耗比更高。 但是對FPGA編程需要特定的硬件知識,因此近來也有對軟件層面的FPGA編程模型的開發。

      此外,一直以來廣為人所接受的理念是,適合所有模型的統一架構是不存在的,因為不同的模型需要不同的硬件處理架構。 而研究人員正在努力,希望FPGA的廣泛使用能夠推翻這一說法。

      大多數深度學習軟件框架(如TensorFlow、Torch、Theano、CNTK)是開源的,而Facebook最近也開放其 Big Sur 深度學習硬件平臺,因此在不久的將來,我們應該會看到更多深度學習的開源硬件架構 。
      特別推薦
      技術文章更多>>
      技術白皮書下載更多>>
      熱門搜索
      ?

      關閉

      ?

      關閉

      主站蜘蛛池模板: 国产成人免费高清激情视频| 插插无码视频大全不卡网站 | 亚洲精品久久久久久久久av无码| 九九热久久只有精品2| 国产+成+人+亚洲欧洲自线| 欧美精品色婷婷五月综合| 国产精品a国产精品a手机版| 人妻精品久久久久中文字幕69| 日本少妇被黑人猛cao| 日本少妇高潮喷水视频| 欧美成人精品高清视频在线观看| 亚洲精品国产第一区第二| 国内精品久久久久伊人av| 又大又长粗又爽又黄少妇毛片 | 精品无码黑人又粗又大又长| 国产人妻丰满熟妇嗷嗷叫 | 无码人妻少妇久久中文字幕蜜桃| 绝顶高潮合集videos| 亚洲国产精品无码久久98| 狠狠婷婷色五月中文字幕| 蜜桃视频一区二区三区在线观看| 日欧一片内射va在线影院| 精品国产亚洲一区二区三区在线观看 | 亚洲国产精品久久艾草纯爱| 精品国产av一区二区果冻传媒 | 日本少妇被黑人猛cao| 欧美日韩视频无码一区二区三| 国产精品美女久久久久av爽李琼| 无码精品a∨在线观看十八禁| 亚洲熟妇久久国内精品| 国内精品久久久久久久小说| 毛片一区二区三区无码 | 狠狠色噜噜狠狠狠狠888奇米| 国产精品超清白人精品av| 久久婷婷五月综合色高清| 初尝黑人嗷嗷叫中文字幕 | 韩国的无码av看免费大片在线| 国产国语熟妇视频在线观看| 一二三四视频社区在线| 久久婷婷五月综合色高清| 无码日韩av一区二区三区|